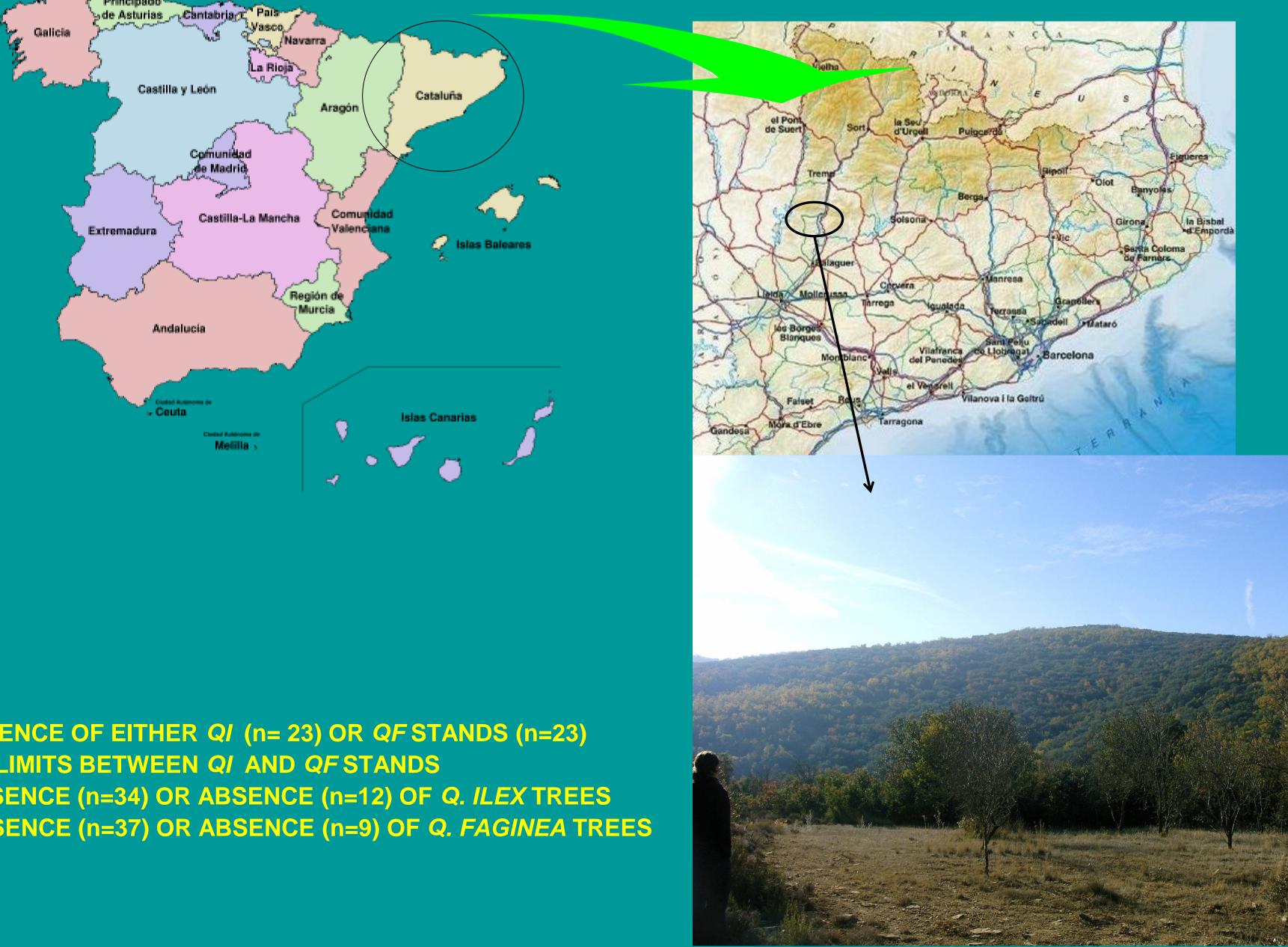
THE SOIL FACTOR IN THE DISTRIBUTION OF MEDITERRANEAN OAK FORESTS IN MONTSEC (NORTHEASTERN SPAIN)


J.R. OLARIETA¹, A. BARGUÉS¹*, R. RODRIGUEZ-OCHOA¹ ¹ DEPARTAMENT DE MEDI AMBIENT I CIÈNCIES DEL SÒL. UNIVERSITAT DE LLEIDA. LLEIDA. SPAIN * PRESENT ADDRESS: DEPARTMENT OF FOREST ECOLOGY AND MANAGEMENT. SWEDISH UNIVERSITY OF AGRICULTURAL SCIENCES. UMEÅ. SWEDEN

INTRODUCTION

- SOILS HAVE SHOWN A SIGNIFICANT INFLUENCE ON FOREST DISTRIBUTION AND PERFORMANCE BUT ARE VERY RARELY INTEGRATED IN TERRESTRIAL ECOSYSTEM ECOLOGY

OBJECTIVES

- TO ANALYSE THE INFLUENCE OF SOILS, AND SOIL AVAILABLE WATER HOLDING CAPACITY (AWHC) IN PARTICULAR, ON THE DISTRIBUTION OF QUERCUS ILEX AND Q. FAGINEA/Q. CERRIOIDES STANDS

MATERIALS AND METHODS

- LOCATION: MONTSEC MOUNTAINS (LLEIDA; NORTHEASTERN SPAIN); ON A NORTH-FACING SLOPE AT 700-900 m a.s.l.
- DATA FROM 46 200 m²-PLOTS DOMINATED BY EITHER:
 - EVERGREEN QUERCUS ILEX (QI STANDS)
 - SEMI-DECIDUOUS QUERCUS FAGINEA / Q. CERRIOIDES (QF STANDS)

- STAND VARIABLES:

- DENSITY OF ALL TREE SPECIES

- TREE HEIGHT AND DIAMETER, AND BASAL AREA OF EACH TREE SPECIES AND STAND

- SITE VARIABLES:

- ALTITUDE AND SLOPE

- SOIL VARIABLES:

- ROOTABLE DEPTH, AWHC

- ORGANIC HORIZONS: MASS, OC, N, P
- MINERAL HORIZONS: pH, OC, Nt, C/N, TEXTURE, CaCO3, ACTIVE LIME, exch K, Olsen P

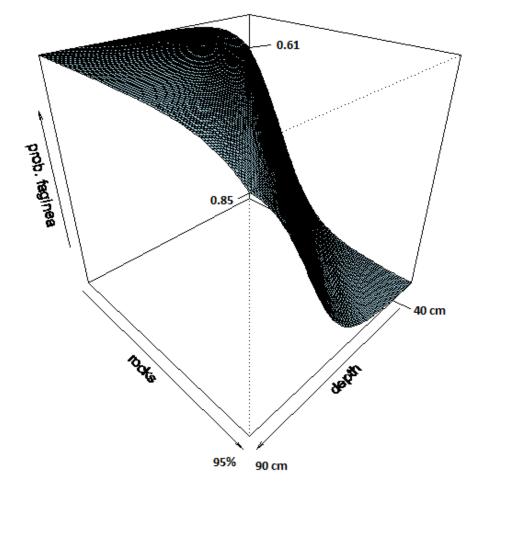
- DATA ANALYSES:

- LOGISTIC REGRESSION TO ESTABLISH THE SOIL/SITE VARIABLES EXPLAINING THE PRESENCE OF EITHER Q/ (n= 23) OR QF STANDS (n=23) - REGRESSION TREE ANALYSIS TO QUANTIFY THE VALUES OF VARIABLES DEFINING THE LIMITS BETWEEN QI AND QF STANDS
- LOGISTIC REGRESSION TO ESTABLISH THE SOIL/SITE VARIABLES EXPLAINING THE PRESENCE (n=34) OR ABSENCE (n=12) OF Q. ILEX TREES
- LOGISTIC REGRESSION TO ESTABLISH THE SOIL/SITE VARIABLES EXPLAINING THE PRESENCE (n=37) OR ABSENCE (n=9) OF Q. FAGINEA TREES

RESULTS AND DISCUSSION

1 STANDS:	Stand characteristics	QI stands	QF stands
	Tree density (trees.ha ⁻¹)	3202 (1250-5050)	3274 (1750-5700)
	Q. ilex density (trees.ha ⁻¹)	3057 (1250-4800)	100 (0-500)
	Q. faginea/Q. cerrioides density (trees.ha ⁻¹)	96 (0-450)	2878 (1450-5650)
	% pure stands	39 %	52 %
	Q. ilex trees / total tree density	96% (>77 %)	< 15 %
	Q. faginea/Q.cerrioides trees / total tree density	< 10 %	89% (> 57%)

2.- SOILS: WELL-DRAINED, NON-SALINE LITHIC HAPLOXEROLLS


Mean values and ranges	QI stands	QF stands
Soil rootable depth (cm)	17 (4-42)	36 (15-90)
Rock fragments (%)	52 (4-95)	16 (3-53)
Sand (%)	32 (14-66)	31 (12-65)
pH min	7.7 (6.8-8.1)	8.0 (6.1-8.2)

3.- DISTRIBUTION OF FOREST TYPES (QI OR QF STANDS)

- LOGISTIC REGRESSIONS FOR QF STANDS

Variables	Parameter Estimate	Pr> z	AIC	Null deviance	Residual deviance
Intercept+ + rock fr.	3.4 - 0.10	< 0.001 < 0.001	36.34	63.8	32.3
Intercept+ rock fr.+ +depth	0.46 - 0.10 0.12	0.74 0.001 0.03	30.93	63.8	24.9
Intercept+ + AWHC	- 4.17 0.16	0.001 0.001	35.2	63.8	31.2

- Q.FAGINEA/Q.CERRIOIDES DOMINATE STANDS ON SOILS WITH AN AWHC OF MORE THAN 22 mm AND LESS THAN 26% ROCK FRAGMENTS - AWHC PROVIDES LESS EXPLANATORY POWER THAN THE COMBINATION OF SOIL ROOTABLE DEPTH AND ROCK FRAGMENT CONTENT

4.- THE PRESENCE OF Q. ILEX TREES IS BEST EXPLAINED BY A COMBINATION OF SOIL ROOTABLE DEPTH (NEGATIVE EFFECT) AND ROCK FRAGMENT CONTENT (POSITIVE EFFECT)

5.- THE PRESENCE OF Q.FAGINEA/Q.CERRIOIDES TREES IS BEST EXPLAINED BY A COMBINATION OF ROCK FRAGMENT (NEGATIVE EFFECT) AND SAND (NEGATIVE EFFECT) CONTENTS, AND pH OF MINERAL HORIZON (POSITIVE EFFECT)

<u>CONCLUSIONS</u>

- THE DISTRIBUTION OF QUERCUS ILEX- AND Q. FAGINEA/Q. CERRIOIDES-DOMINATED STANDS IN THE STUDY AREA IS RELATED TO SOIL PHYSICAL **PROPERTIES: AVAILABLE WATER HOLDING CAPACITY AND AERATION CAPACITY**
- MODELS EXPLAINING THE PRESENT DISTRIBUTION AND FUTURE RESPONSE OF THESE FORESTS TO CLIMATE CHANGE SHOULD INCORPORATE SOIL INFORMATION